-Lecture ⁴ : Applications, of correlation functions ⑪ Recap : Bp(p, +) ⁼ p + Bu(T)p2 ⁺ By(t)p3 +.... Virial expansion, Mayer expansion, cluster expansion. We find also expansion of the free energy : & ⁼ p[log(p13) - 1] + By(t)p2 ⁺ =By(t)p3 +.... Approximate resummation of virial expansion gives the Carnahan-Starling (CS) equation of & state · Virial coefficients not easy to compute at high order (slowly converging) , sometimes ill-defined (e . g . Coulomb) =>) Correlation functions . radial distribution p() ⁼ [ii] function "conditional g(ri) ⁼ <[,)Cr-Fj)] & probability" ijj⁼ - Translational invariant ⁺ isotropic -> p(ii) ⁼ &g((v - 1) E . gatoms in first coordination shell : n(r) ⁼ 49g() n) first coordinate shell) ⁼ ¹² (liquid and solid 1) Tutorials: g(rip.T) ⁼ e-Bv(r) ⁺ O(p) (gas is just Boltzmann weight t (In this week tatorials : w(r) ⁼ -EBTlogg(r) ⁼ -- potential of mean force

Claim: if we know g (r) ~ entire thermody namics. · Galoric route to thermodynamics.

 $\overline{3}$

Claim: If we know
$$
g(r) \rightarrow
$$
 entire thermody names.
\n \cdot Galoric route to thermodynamics
\nConsider the other
\n $l = \langle H \rangle = \langle \sum_{i=1}^{N} \vec{P}_{i}^{2} \rangle + \langle \sum_{i=1}^{N} \sum_{j=1}^{N} v ([\vec{r}_{i} - \vec{r}_{j}]) \rangle$
\n $= \frac{3}{2} N k_{g} T + \frac{1}{2} \langle \sum_{i=1}^{N} \sum_{j=1}^{N} \int d\vec{r}^{T} \delta(\vec{r} - \vec{r}_{i}) \delta(\vec{r} - \vec{r}_{j}) v (|\vec{r} - \vec{r}_{i}|) \rangle$
\n $= \frac{3}{2} N k_{g} T + \frac{1}{2} \langle \sum_{i=1}^{N} \int d\vec{r}^{T} \delta(\vec{r} - \vec{r}_{i}) \delta(\vec{r} - \vec{r}_{j}) v (|\vec{r} - \vec{r}_{i}|) \rangle$
\n $= \frac{3}{2} N k_{g} T + \frac{1}{2} \int d\vec{r}^{T} \rho^{(2)}(\vec{r}_{i} \vec{r}) v (|\vec{r} - \vec{r}_{i}|).$
\n $\frac{1}{2}$ homogeneous, isotropic systems:
\n $\frac{U}{V} = \frac{3}{2} p k_{g} T + \frac{p^{2}}{2} \int d\vec{r} g(r) v(r).$
\n $\frac{V_{\text{trial}}}{V}$ route to the modernedynamics

$$
\frac{U}{V}=\frac{3}{2}gk_8T+\frac{g^2}{2}\int d\vec{r} g(\vec{r})v(\vec{r}).
$$

· Virial route to thermodynamics

Virial theorem from classical mechanics(see Problem 2. 5) : p = phbT- = plsT-tfdfd() (

For homogeneous and isotropic system:
\n
$$
p = g k_{B} T - \frac{g^{2}}{6} \int d\vec{r} \cdot rg(r)v(r)
$$

\n \sim if g.c. $g = \frac{\langle N \rangle}{\sqrt{}}$

Note: no ensemble specified ? Only valid for pair potentials.
~> else higher order correlation functions needed

Remarks: We use restricted only to polar-wise additive potential.

\nHower, the scheme is easily extend the table addition of three-body, four-body etc.

\npolombials. The domain of the two-dimensional result, but can be go if the complex order correlation functions.

\nAnother general inequality, but the other two-dimensional result, but the same be of the corresponding numbers.

\nWallid for arbitrary
$$
\Phi(\pi^M)
$$
. Most easily derived in general, the formula for a horizontal number of some not, then the equation is $S = \frac{2N}{N}$.

\nValid for a horizontal number of the other hand, and the formula is $S = \frac{2N}{N}$.

\nThat (m) = $\sum_{N=0}^{\infty} \frac{1}{N!} \int_{N} \int_{N} d\vec{r}^{N} \int_{d\vec{r}} d\vec{r}^{N} \left(\cdots \right)$

\nLet that $Tr_{(1)} f_N = Tr_{(1)} \int_{d\vec{r}} f_N = -\beta (H - \mu N)$.

\nNote that $Tr_{(1)} f_N = 1$.

\nNote: in general, the formula is $\sum_{N=0}^{\infty} \left[\int_{d\vec{r}} f_N(-s) \right] = \int_{d\vec{r}} \int_{d\vec{r}} f_N(-s) \left(\frac{1}{n} \pi^T \right) \left(\frac{$

Density density correlation function:
\n
$$
G(\vec{r}, \vec{r}') = \langle S_{\beta}(\vec{r}) S_{\beta}(\vec{r}') \rangle
$$
 $S_{\beta}(\vec{r}) = \hat{\gamma}(\vec{r}) - \langle \beta(\vec{r}) \rangle$.
\nNote that: $G(\vec{r}, \vec{r}') = g^{(1)}(\vec{r}, \vec{r}') - g(\vec{r})g(\vec{r}') + g(\vec{r}) S(\vec{r} \cdot \vec{r}')$.
\nWith this property it is straightforward to show that:
\n $\int d\vec{r} d\vec{r}' G(\vec{r}, \vec{r}') = \langle N^2 \rangle - \langle N \rangle^2$.
\nWe want to relate number fluctuations to measurable
\nquantities. Let $s \in \mathbb{N}$
\n $\langle N^{\alpha} \rangle = T_{\vec{r}}(f_{\vec{r}}, N) = \frac{1}{\sqrt{2}} Tr_{\alpha} [\langle N^{\alpha} e^{-\beta(H-\mu N)} \rangle]$
\n $\Rightarrow \frac{1}{\sqrt{2}} Tr_{\alpha} [\frac{\partial^{\alpha}}{\partial(\mu)} \langle \vec{r} \rangle - \frac{\beta(H-\mu N)}{\langle \vec{r} \rangle}] \frac{\partial^{\alpha}}{\partial(\mu)} Tr_{\alpha} [\frac{\partial^{\alpha}}{\partial(\mu)} \langle \vec{r} \rangle - \frac{\beta(H-\mu N)}{\langle \vec{r} \rangle}] \frac{\partial^{\alpha}}{\partial(\mu)} Tr_{\alpha} [\frac{\partial^{\beta}(\mu - \mu N)}{\langle \vec{r} \rangle}]$

The number fluctuations are there fore: $\langle N^2 \rangle - \langle N \rangle^2 = \frac{1}{\sqrt{2}} \left(\frac{\partial^2 \vec{L}}{\partial (8\mu)^2} \right)_{V,T} - \frac{1}{\sqrt{2}} \left(\frac{\partial \vec{L}}{\partial \beta \mu} \right)^2_{V,T}$ $=\left(\frac{\partial^2 ln \Xi}{\partial (\beta \mu)^2}\right)_{V,T}=\left(\frac{\partial}{\partial \beta \mu}\left(-\frac{\partial \Omega}{\partial \mu}\right)_{V,T}\right)_{V,T}=\left(\frac{\partial \langle N \rangle}{\partial (\beta \mu)}\right)_{V,T}.$ $(Rccall: d\Omega = -SdT - pdV - Nd\mu)$

Using that
$$
p = \frac{\langle n \rangle}{\sqrt{\frac{200}{\theta p}}}
$$
 when rule
\n $\langle n^{2}\rangle - \langle n \rangle^{2} = V(\frac{\partial \theta}{\partial \beta w})_{T} = V(\frac{\partial \theta}{\partial p})(\frac{\partial \theta}{\partial p} - \frac{\partial \theta}{\partial \beta w})_{T}$
\nRecall the Mowell relation: $(\frac{\partial p}{\partial \mu})_{T} = p$
\n $\langle n^{2}\rangle - \langle n \rangle^{2} = k_{B}T \langle n \rangle (\frac{\partial p}{\partial p})_{T}$
\n ρu_{T} with $u_{T} = -\frac{1}{\sqrt{\frac{2V}{\rho_{P}}}}\Big|_{n_{T}} = \frac{1}{\sqrt{\frac{2V}{\rho_{P}}}}\Big|_{n_{T}} = \frac{1}{\sqrt{\frac{2V}{\rho$

The structure factor

For homogeneous system: $G(\vec{r}, \vec{r}') = G(\vec{r} - \vec{r}')$ We introduce the Fourier transform: $\widetilde{G}(\vec{k})$ = neous system: $G(\vec{r}, \vec{r}') = G(\vec{r} - \vec{r}^T)$

ace the Fourier transform:
 $\int d\vec{r}' G(\vec{r}) e^{-i\vec{k} \cdot \vec{r}}$; $G(\vec{r}) = \int \frac{d\vec{k}}{(\cos \theta)^3} \widetilde{G}(\vec{k}) e^{i\vec{k} \cdot \vec{r}}$ When system is also isotropic: $G(\vec{r}-\vec{r}^{\, \prime})$ = $G(|\vec{r}-\vec{r}^{\, \prime}|)$ $=$ $\widetilde{G}(\vec{k})$ = $\widetilde{G}(\vec{k})$. We define the static structure factor as $\widetilde{G}(h)$ = p $S(k)$ Note that in terms o $\int q(r)$: $S(k) = 1 +$ $\int_{c} d\vec{r} \, e^{-i\vec{k} \cdot \vec{r}} \, \Gamma_{q}(r) 1 + (z\pi)^3 \delta(\vec{k}).$ Define lim $S(h) = 1 + \rho \int d\vec{r} \left[q(r) - 1 \right].$ Define lim $S(h) = 1 + \rho \int d\vec{r} \left[q(r) - 1 \right]$.
So compressibility sammle vs: $\boxed{\lim_{k \to 0} S(k) = \rho k_B T k_T}$ The static structure factor can le obtained from scattering experiments. $\mathbb{T}(\theta) \propto \mathcal{S}(\mathsf{q})$ $lim_{k\to0} S(h) = 1 + \rho \int dP [g(r)-1].$

pressibility sammle is: $\boxed{lim_{k\to0} S(k) = \rho k_B T k_T}$

atic structure factor can le obtained from

ring experiments.
 $\begin{array}{ccc}\n\overbrace{lim}_{k\to0} S(k) < S(q) \\
\hline\n\end{array}$
 $lim_{n \to \infty} S(q)$
 $lim_{k \to \infty} \boxed{lim_{k \to \in$ A

transferred.

⑰

Next Lecture. $Tutorial: P2.4C, 2.5$

Static structure factor via X-ray scattering

\nRatio structure factor via X-ray scattering

\nlimit

\nincoometric matrix

\nfor the two two complex numbers are

\nfor the two complex numbers,
$$
\vec{r}_1
$$
 and \vec{r}_2 are

\nof the two complex numbers, \vec{r}_2 and \vec{r}_3 are

\nof the two components, \vec{r}_1 and \vec{r}_2 are

\nfrom scattering from an atom at position \vec{r}_1 to detector at \vec{r}_2 .

\nAssumption: detector for from scattering case of the cell.

\nTherefore, \vec{r}_1 and \vec{r}_2 are

\nthen, \vec{r}_2 and \vec{r}_3 are

\nthen, \vec{r}_2 and \vec{r}_3 are

\nthen, \vec{r}_3 are

\nthen, \vec{r}_3 are

\nand, \vec{r}_3

Total scattered wave =
$$
\frac{1}{2}(R) = \frac{e^{i\vec{k}_{out} + \vec{k}_{d}}}{|P_{c} - P_{d}|} \sum_{i=1}^{N} e^{-i\vec{k} \cdot P_{c}}
$$
 fixed configuration
\namplitude.
\n $I(\theta)$ = observed interest, by at the observer = $\frac{N[\theta \hat{\theta})|^2}{|P_{c} - P_{d}|} + \frac{1}{N} \sum_{i=1}^{N} e^{i\vec{k} \cdot (P_{i} - P_{d})}$
\n $H_{\text{out,other}}$
\n $I(\theta)$ = observed interest, by at the observer = $\frac{N[\theta \hat{\theta})|^2}{|P_{c} - P_{d}|} + \frac{1}{N} \sum_{i,j} e^{i\vec{k} \cdot (P_{i} - P_{j})}$
\n $I_{\text{out,other}}$
\n